
JokerGAN: Memory-Efficient Model for Handwritten Text
Generation with Text Line Awareness
Jan Zdenek

jan@nlab.ci.i.u-tokyo.ac.jp
The University of Tokyo

Tokyo, Japan

Hideki Nakayama
nakayama@ci.i.u-tokyo.ac.jp
The University of Tokyo

Tokyo, Japan

Figure 1: The text in this image was generated by our proposed method.

ABSTRACT
Collecting labeled data for training of models for image recogni-
tion problems, including handwritten text recognition (HTR), is
a tedious and expensive task. Recent work on handwritten text
generation shows that generative models can be used as a data aug-
mentation method to improve the performance of HTR systems.

In this paper, we propose a newmethod for handwritten text gen-
eration that uses generative adversarial networks with multi-class
conditional batch normalization, which enables us to use character
sequences with variable lengths as conditional input for the gener-
ator. Compared to existing methods, our method has significantly
lower memory requirements which are almost constant regardless
of the size of the character set. This allows us to train a generative
model for languages with a large number of characters, such as
Japanese. We also introduce an additional condition that makes the
generator aware whether there are characters extending below the
baseline or above the mean line in the generated sequence, which
helps generate handwritten text with well-aligned characters in the
text line.

Experiments on handwritten text datasets show that our pro-
posed model can be used to boost the performance of HTR, partic-
ularly when we only have access to partially annotated data and
train our generative model in semi-supervised fashion. The results
also show that our model outperforms the current state-of-the-art
for handwritten text generation. In addition, we perform a human
evaluation study that indicates that the proposed method generates
handwritten text images that look more realistic and natural.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACMMM ’21, October 20–24, 2021, Chengdu, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CCS CONCEPTS
• Computing methodologies → Computer vision; Computer
graphics.

KEYWORDS
generative adversarial networks, image generation, handwritten
text, data augmentation
ACM Reference Format:
Jan Zdenek and Hideki Nakayama. 2021. JokerGAN: Memory-Efficient
Model for Handwritten Text Generation with Text Line Awareness. In
ACMMM ’21: ACM International Conference on Multimedia, October 20–24,
2021, Chengdu, China. ACM, New York, NY, USA, 13 pages. https://doi.org/
10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Handwriting has been used since the distant past as a means of
documentation and communication. In the digital era, a lot of hand-
written text has been replaced by text in digital form; however,
handwriting is still used in many different situations and places
where handwriting is more convenient or using digital devices is
difficult. One of the prominent places where a lot of data is still
recorded using handwritten documents are medical institutions.
Recently, there is an increasing demand for technology that can
convert handwritten data into digital form for various purposes
such as storing and sharing data more securely [4], creating search-
able databases [1], and analyzing data with modern technologies
[9].

State-of-the-art systems for optical character recognition (OCR)
can recognize text in printed form with excellent precision, but
recognition of handwritten text is still quite a challenging problem.
Recent methods for handwritten text recognition (HTR) use deep
neural networks (DNNs) since DNNs have demonstrated excep-
tional performance in many computer vision tasks. Modern DNNs
benefit from having access to a large amount of labeled data, and
increasing the size of the training set tends to improve the accu-
racy. However, collecting labeled data for training is a tedious and

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACMMM ’21, October 20–24, 2021, Chengdu, China Jan Zdenek and Hideki Nakayama

costly process. In addition, DNNs are sensitive to differences in
image characteristics that can be caused by using different types of
pens and paper, different lighting conditions, and different scanning
techniques and post-processing. As a result, HTR systems trained
on existing handwritten text datasets might not yield good perfor-
mance on images of handwritten text with different properties, and
creating new labeled datasets can lead to better results.

Recently, several works have made an effort to improve the per-
formance of handwritten text recognition systems by exploiting
the progress in image generation [7, 14, 30, 31], and use genera-
tive models to augment training datasets by creating new training
samples. Alonso et al. [3] were the first to use handwritten text
generation as a data augmentation method to increase HTR per-
formance. However, their method can only generate images of a
fixed size, which is not suitable for generating handwritten words
because words greatly vary in length. Another work [12] proposed
an improvement that allows generation of images of variable sizes,
which results in a significantly better visual quality of the results.
However, the method requires a bank of filters for each character
in the dataset. This makes the size of the model nearly linearly
dependent on the size of the character set and makes training on
datasets of languages with large character sets such as Japanese
infeasible.

In this work, we propose a novel method for handwritten text
generation to produce more realistic images of handwritten text.
Our main motivation is to improve HTR performance by data aug-
mentation using trained generative models. However, we believe
that automatic generation of handwritten text can also be used
for various other purposes such as generating realistic-looking
handwritten text in games or virtual reality environments.

The contributions of our paper are as follows:

• We propose a novel method for handwritten text generation
which can generate images of text with variable lengths and
use arbitrary character sequences as conditions. It outper-
forms current state-of-the-art in several experiments while
having significantly lower memory requirements achieved
by introducing multi-class conditional batch normalization.
• Thanks to the lower memory requirements, our method
can be used to train generative models using datasets with
large character sets, such as Japanese text, which contains
thousands of different characters.
• We introduce a novel conditional input that specifies verti-
cal properties of characters in the generated word, which
improves alignment of generated characters in the text line.

Our proposed method is inspired by ScrabbleGAN [12], and so is
the name of it. ScrabbleGAN owes its name to an analogy between
its generation process and the way that words are put together in
the game of Scrabble, i.e. concatenating tiles with different letters
to form a word. In our proposed method, we chain a single base
filter into the desired length based on the target word length. Our
single base filter can turn into any letter in the character set based
on the conditional input into the generator, which resembles the
blank tile in Scrabble or a joker in cards. Therefore, we call our
proposed method JokerGAN.

2 RELATEDWORK
2.1 Handwritten Text Recognition
Handwritten text recognition (HTR) is a special case of optical
character recognition that focuses on handwritten text. It is an
extensively studied research field that has attracted a lot of interest
over many years [32]. HTR methods can be divided into two types:
online and offline. Online methods [6, 19] use sequential data of pen
location as the text is being written. This information about how the
text was written provides more clues than an image and it can help
identify characters based on the movement of pen. Offline methods
[11, 33, 37] only use images of handwritten text, so they do not have
access to the information about how the text was written. However,
since offline methods only use images of text, it is easier to collect
a lot of such data for training. Furthermore, offline methods can be
used in a broader variety of situations where online data cannot be
obtained.

Recent offline HTR methods exploit the progress in deep neural
networks. Suerias et al. [37] proposed a method that is inspired by
the sequence-to-sequencemodel [38], and uses an attention decoder
for prediction. Another recent work [11] achieved improvement in
HTR performance by combining several popular techniques for text
recognition and introduced a model that shares a lot of similarities
with recent state-of-the-art models for scene text recognition, which
suggests that a lot of approaches for scene text recognition can be
used for HTR, too.

2.2 Handwritten Text Image Generation
Success of deep learning methods in the past decade has seen deep
neural networks being used for many new problems and applica-
tions, including handwritten text generation. The first work that
applied deep learning to handwritten text generation proposed a
method for synthesis of online handwritten trajectories using a re-
current neural network [15]. Ji et al. [20] improved the method from
[15] by adding a discriminator network and using adversarial train-
ing introduced by GANs [14]. Further improvement was achieved
in [2] by disentangling the style and content of handwritten text
images to add control over the style of generated handwritten text.

Collecting large amount of online handwriting data is challeng-
ing because special equipment is required to record the sequential
data of handwriting trajectories. Furthermore, it is difficult to learn
long-range dependencies using recurrent-based methods, and their
training requires a lot of time. On the other hand, obtaining im-
ages of handwritten text is much easier and recent advancements
in image generation [7, 14, 30, 31] further encourage to research
handwritten text generation using offline handwriting data.

Both GANs [14] and variational auto-encoders [23] were shown
to be able to generate images of realistic handwritten digits. Later,
Mirza et al. proposed conditional GANs (cGANs) [30] that were
able to generate images of single handwritten digits conditioned
on their class label.

Research on generation of handwritten text images can be di-
vided into two categories: 1) generation of handwritten text with
styles based on latent vectors sampled from a given distribution
[3, 12], and 2) generation of handwritten text with style conditioned
by reference images [10, 13, 21]. Some methods such as [13] also

JokerGAN: Memory-Efficient Model for Handwritten Text Generation with Text Line Awareness ACMMM ’21, October 20–24, 2021, Chengdu, China

use additional information about writer identities for training. In
our work, we focus on the first category.

Alonso et al. [3] were the first to apply recent progress in image
generation to propose a method that could generate images of
handwritten words. Furthermore, they demonstrated that such
generated images can be used to augment datasets of handwritten
text and improve performance in handwritten text recognition. The
architecture of their proposed model was based on BigGAN [7],
and they used LSTM [18] to embed the target word into a fixed
length vector which can be used as a condition for the generator.
As a result of the design, the generator only produces fixed-size
images, which means that the width of the generated handwritten
words is the same regardless of the number of characters in the
word, which can cause distortion. ScrabbleGAN [12] was inspired
by [3] and it uses a similar architecture based on BigGAN. Unlike
[3], ScrabbleGAN can generate images of various sizes depending
on the length of the target word. Instead of LSTMword embeddings,
it uses a bank of base filters for each letter in the alphabet. The
generator input has a variable size and consists of 𝑘 base filters
that correspond to 𝑘 letters in the target word. The base filters are
concatenated and passed to the generator. The main disadvantage
of ScrabbleGAN is that the memory requirements for the bank
of base filters grow significantly as the size of the character set
increases. In case of the Latin alphabet, the size of the character set
is small and does not pose problems, but the memory requirements
for training with a dataset of Chinese or Japanese text are too large
to allow conventional training on regular GPUs.

In contrast with ScrabbleGAN, our proposed method can gener-
ate handwritten text of variable size without using a bank of base
filters. As a result, our model requires significantly less memory
and it can scale to data with a large number of characters in the
character set. In addition, we introduce a new type of conditioning
that improves the alignment of characters in generated images.

2.3 Image Generation of Chinese Characters
Chang et al. [8] proposed a generative model based on CycleGAN
[40] to synthesize images of handwritten Chinese characters from
Chinese characters in printed form. Several more works followed
and proposed methods to generate Chinese handwriting [39] and
fonts for Chinese characters [26] from existing images using image
translation and style transfer techniques. To the best of our knowl-
edge, our work is the first to attempt generation of handwritten
Chinese characters from scratch.

3 JOKERGAN
Our method is based on GANs for image generation and is inspired
by [12]. Our objective is to train a generator G that can produce
realistic images of handwritten text conditioned by character se-
quences of arbitrary length y = (𝑦1, . . . , 𝑦𝑘), where 𝑘 is the length of
the character sequence. Besides a generator G and a discriminator
D, which are essential to train a GANmodel, we also use a network
for text recognition R. During training, images generated by G are
passed to both D and R. The purpose of D is to predict whether
the image is real or generated, which helps G to learn to generate
realistic looking handwriting images by using an adversarial loss.
The recognition network R tries to recognize the text in the image

and encourages G to generate images that are readable and match
the input condition using a loss function for text recognition.

In Section 3.1, we introduce the architecture of each module in
our model, and explain the training process.

In our proposed method, we modify the generator from [12] and
replace the filter bank by a single base filter for all characters. In
addition, we introduce multi-class conditional batch normalization.
It replaces the functionality of the filter bank and allows the network
to generate images of character sequences that match the input
condition y while significantly reducing the memory requirements
of the network. We describe it in detail in Section 3.2. Furthermore,
we also introduce an additional condition based on the vertical
aspects of the text to make the generator G aware of the global
baseline and mean line of the text, which is covered in Section 3.3.

3.1 Model Architecture
Discriminator. The discriminator D learns a binary classification
problem of predicting whether an image is real or generated by G.
A pooling layer is used to aggregate the outputs of the last convo-
lutional layer, which allows image inputs with variable sizes. The
aggregated features are used to make the final binary prediction.

Given a dataset with pairs of images x and their labels y, la-
tent vectors z sampled from a normal distribution N(0, 1), and
text line conditions t (explained in Section 3.3), D is optimized by
minimizing hinge adversarial loss [25] defined as follows:

LD
𝑎𝑑𝑣

=Ex∼𝑝𝑑𝑎𝑡𝑎 [min(0,−1 + D(x)]
− Ez∼𝑝𝑧 ,y∼𝑝𝑑𝑎𝑡𝑎 [min(0,−1 − D(G(y, z, t))] .

(1)

Text Recognizer. The text recognizer R predicts the text in the
input images. Most recent methods for text recognition [27, 28, 35]
use bidirectional recurrent neural networks [34], which allows them
to use information from the entire character sequence to predict
individual characters by learning an implicit language model. This
can allow the network to read some characters correctly despite
being illegible. That is a desired property for text recognition, but
we want R to promote generation of legible characters, so this
property is undesirable in our case. Therefore, following [12], we
do not use recurrent layers in our R.

The text recognizer R is trained only on real labeled images of
handwritten words.We optimizeR byminimizing the connectionist
temporal classification (CTC) loss [16] using pairs of images x and
their corresponding ground-truth labels y from the labeled dataset.

LR
𝐶𝑇𝐶

= Ex,y∼𝑝𝑑𝑎𝑡𝑎 [−y · logR(𝑥)] . (2)

Training R to correctly recognize handwritten text allows us to
use it to provide guidance to training of G.
Generator. We want to generate images of handwritten text con-
ditioned by character sequences with arbitrary lengths, so the gen-
erator has to be able to generate images of varying sizes. In hand-
writing, all characters are typically written next to each other and
each character can affect the shape of its neighboring characters
or it can even be connected to them. The design of our generator
mimics this process by the following strategy.

(1) Text Base Map Formation. Let 𝑓 be a base filter of a gen-
erator network. We implement 𝑓 as a linear neural network
layer. Given a character sequence y = (𝑦1, . . . , 𝑦𝑘) of size 𝑘

ACMMM ’21, October 20–24, 2021, Chengdu, China Jan Zdenek and Hideki Nakayama

Figure 2: An overview of JokerGAN. During training, the generator is updated using both the adversarial loss and the CTC
loss for text recognition. The discriminator learns to discern real images of handwriting and generated images without using
any information about classes. The text recognition module is optimized only using real images.

that we want to generate, and its embedding c = (c1, . . . , c𝑘),
we concatenate c with a latent code z sampled from the
normal distribution, and text line condition embeddings t,
described in 3.3, to form embeddings e = (c1 ⊕ z⊕ t, . . . , c𝑘 ⊕
z ⊕ t) = (e1, . . . , e𝑘), where ⊕ denotes concatenation. Each
element ei in e represents a single character in the character
sequence y = (𝑦1, . . . , 𝑦𝑘) used as condition. We pass e to
the base filter 𝑓 , and concatenate the outputs from 𝑓 along
the horizontal axis as if putting tiles next to each other to
create a text base map b.
The major benefit and main difference from [12] is that our
model uses only one base filter for all characters in the char-
acter set. The generator in [12] requires a bank of base filters
F which is as large as the character set. In case of the English
alphabet, the filter bank F = {𝑓𝑎, ..., 𝑓𝑧 , 𝑓𝐴, ..., 𝑓𝑍 } consists of
52 base filters. The base filters have a lot of parameters and
have a significant memory footprint, so using a large bank
of base filters is very inefficient.

(2) Conditional Generation. A fully convolutional network is
used to upsample the text base map and generate characters
according to a given character sequence y = (𝑦1, . . . , 𝑦𝑘).
We introduce multi-class conditional batch normalization
(MCCBN) which is our extension of conditional batch nor-
malization (CBN) [31] that is widely used in conditional
image generation. Unlike CBN, which conditions the whole

image using one class, MCCBN lets us condition the image
generation process on a sequence of multiple classes, which
is the character sequence y embedded into c = (c1, . . . , c𝑘)
in our case. Besides class conditions, MCCBN also allows us
to inject a latent vector z, which we sample from a normal
distribution N(0, 1), to generate text in different styles, and
text line conditions t to improve alignment of characters.
We further explain MCCBN in Section 3.2. Thanks to the
convolutional properties of the generator, the receptive field
of each character in the generated image overlaps with adja-
cent characters, which leads to natural transitions between
characters and also enables generation of text in cursive.

The strategy explained above allows G to generate images of hand-
written text with different sizes conditioned on character sequences
y with arbitrary length, and with different styles that can be con-
trolled by latent vector z.

The loss function used to optimize G consists of two loss terms:
adversarial loss, and text recognition loss. Adversarial loss is used to
makeG learn to generate images thatD will consider as real images
of handwriting. Text recognition loss is used to make G learn to
generate real words that match the conditional input instead of
gibberish.

Given character sequences y sampled from a lexicon of words,
latent vectors z sampled from a normal distribution N(0, 1), and

JokerGAN: Memory-Efficient Model for Handwritten Text Generation with Text Line Awareness ACMMM ’21, October 20–24, 2021, Chengdu, China

text line conditions t, the adversarial loss of G is

LG
𝑎𝑑𝑣

= −Ez∼𝑝𝑧 ,y∼𝑝𝑑𝑎𝑡𝑎D(G(y, z, t)). (3)

Text recognition loss ofG is obtained by predicting text in generated
images using R:

LG
𝐶𝑇𝐶

= Ez∼𝑝𝑧 ,y∼𝑝𝑑𝑎𝑡𝑎 [−y · logR(G(y, z, t))] . (4)

Defining 𝜆 as a hyperparameter to balance the contribution of
the two loss terms to the total loss, we optimize G by minimizing
the joint loss term

LG = LG
𝑎𝑑𝑣
+ 𝜆 · LG

𝐶𝑇𝐶
. (5)

All modules, i.e. G,D, and R, are trained jointly. A simplified
summary of the optimization process is presented in Algorithm 1,
and an overview of our model is illustrated in 2.

Algorithm 1: Optimization process of the model
G,D,R: Generator, Discriminator, Recognizer
𝐼𝑅, 𝐼𝐺 : real image, generated image
yR, yL: character sequences
LG
𝑎𝑑𝑣

, LD
𝑎𝑑𝑣

: adversarial loss functions
L𝐶𝑇𝐶 : CTC loss function
𝜆: weight of text recognition loss for G optimization
while training do

sample 𝐼𝑅 , yR from Dataset
sample yL from Lexicon
sample z from N(0, 1)
t← get text line condition based on yL
𝐼𝐺 = G(yL, z, t)
update D to minimize L𝐷

𝑎𝑑𝑣
(D(𝐼𝑅 , 𝐼𝐺))

update R to minimize L𝐶𝑇𝐶 (R(𝐼𝑅), yR)
update G to minimize
L𝐺
𝑎𝑑𝑣
(D(𝐼𝐺)) + 𝜆 · L𝐶𝑇𝐶 (R(𝐼𝐺), yL)

end

3.2 Multi-Class Conditional Batch
Normalization

Class-conditional batch normalization [31] is a widely used method
in GANs to generate images that belong to a specific class. In con-
ventional class-conditional batch normalization, only one class is
used for the entire image. However, in case of generation of charac-
ter sequences, different regions in the feature maps require different
class conditions that correspond to the characters in the sequence.
We design a simple solution that allows us to use conditional batch
normalization with multiple classes, which we call multi-class con-
ditional batch normalization (MCCBN).

For conventional single-class conditional batch normalization

𝑥 = 𝛾𝑐
𝑥 − 𝜇𝑏√
𝜎2
𝑏
+ 𝜖
+ 𝛽𝑐 , (6)

the adaptive gain 𝛾𝑐 and bias 𝛽𝑐 parameters are learned during
network optimization and their values depend on the class condition
𝑐 . Each class takes on a specific learned value for 𝛾𝑐 and 𝛽𝑐 . In case
of regular class conditional batch normalization, the conditional

Figure 3: Illustration of the concept of baseline and mean
line in the Latin alphabet.

input is one class 𝑐 and its corresponding 𝛾𝑐 and 𝛽𝑐 are applied
across the horizontal and vertical axes of the feature maps.

In our case, we have a conditional input consisting of multiple
classes (𝑦1, ..., 𝑦𝑘) and their embeddings (c1, ..., c𝑘) which corre-
spond to the characters in the target character sequence y of length
𝑘 . Assuming that all characters have a similar width, we divide the
feature maps into 𝑘 regions of identical size and apply a different 𝛾𝑐

𝑖
and 𝛽𝑐

𝑖
value to each feature map region. The 𝛾𝑐

𝑖
and 𝛽𝑐

𝑖
values are

dependent on class conditions c𝑖 , which are dependent on positions
𝑖 in the target character sequence y.

Let 𝑊 be the horizontal size of the feature map. Multi-class
conditional batch normalization can then be defined as:

𝑥𝑚𝑛 = 𝛾𝑐𝑖 ·
𝑥𝑚𝑛 − 𝜇𝑏√

𝜎2
𝑏
+ 𝜖
+ 𝛽𝑐𝑖 , (7)

where𝑚 and 𝑛 represent the horizontal and vertical positions in
the feature map and

𝑖 =

⌊
𝑚 · 𝑘

𝑊

⌋
. (8)

In other words, 𝑖 is the position in a character sequence of size 𝑘 .
In order to generate different handwriting styles, we also inject

latent vectors z along with text line conditions t into MCCBN. We
learn shared gain 𝜃𝑧 and bias 𝛿𝑧 which are dependent on a vector
formed by concatenation of z and t. We apply the same 𝜃𝑧 and 𝛿𝑧
across the whole feature map so that the style of handwriting is
consistent. MCCBN with latent code injection, which we use in all
our experiments, can then be defined as

𝑥𝑚𝑛 = 𝜃𝑧 · 𝛾𝑐𝑖 ·
𝑥𝑚𝑛 − 𝜇𝑏√

𝜎2
𝑏
+ 𝜖
+ 𝛽𝑐𝑖 + 𝛿

𝑧 , (9)

3.3 Conditional Generation Based on Vertical
Aspects of Text

Most scripts have a notion of baseline, which is a line on which the
text rests. The Latin alphabet contains letters that reach below the
baseline, such as ‘g’, ‘p’, or ‘y’. Besides the baseline, there is also a
notion of mean line in the Latin alphabet, which defines the height
of most lowercase letters. Uppercase letters and some lowercase
letters such as ‘h’ are taller and extend significantly above the mean
line. Figure 3 shows an example describing the concept of baseline
and mean line in text written in the Latin alphabet.

If a small case letter that extends only from the baseline to the
mean line is generated across the entire height of the output image,
any letter that extends below the baseline or above the mean line
will not be able to naturally fit in the image and it will either cause
misalignment of the baseline or the mean line, or it will be heavily
distorted to compensate for the misalignment.

ACMMM ’21, October 20–24, 2021, Chengdu, China Jan Zdenek and Hideki Nakayama

word examples
below
baseline

above
mean line

‘common’, ‘woman’ x x
‘song’, ‘approve’ ✓ x
‘ball‘, ‘another’ x ✓
‘long’, ‘shortage’ ✓ ✓

Table 1: Examples of text line conditions (TLCs) for differ-
ent words. There are four possible values of TLC based on
the absence or presence of characters extending below the
baseline or above the mean line.

To prevent misalignment and distortion of the generated word
images caused by the lack of awareness of the baseline and mean
line in the target word, we introduce an additional condition in
the input of the generator. The condition has four possible values
depending on the presence or absence of letters that extend below
the baseline or above the mean line in the target character sequence
y as shown in Table 1.We embed this condition into a vector twhich
we concatenate with the latent vector z. For simplicity, we further
refer to this conditioning as text line condition (TLC).

We only use TLC for experiments on the Latin alphabet data
because Japanese text does not have a similar notion of multiple
alignment lines in the text line and all characters rest on the base-
line.

4 EXPERIMENTS
4.1 Implementation Details
The architecture of G and D is based on BigGAN [7], with CBN
layers replaced by our proposed MCCBN. The architecture of R
is based on [35] without recurrent layers. The model is optimized
using the Adam optimizer [22] with a learning rate of 0.0002 and
(𝛽1, 𝛽2) = (0.0, 0.999). We set 𝜆 in the loss function of G to 1. During
training, we group image samples into batches by theword length so
that all images in each batch have the same size. For experiments on
the Latin alphabet datasets, the size of latent vector z is 160, and the
vector is split into 5 chunks of size of 32, which are passed to each
level of G and the base filter 𝑓 . The size of character embeddings is
set to 32 to match the size of z. Unless specified otherwise, the size
of text line condition embedding t is 4. We conduct the experiments
on a single NVIDIA V100 GPU and we set the batch size to 8.

4.2 Datasets
We use the following datasets for our experiments:
• IAM. The IAM dataset [29] consists of about 80k images of
handwritten English words. It is divided into training, test,
and two validation sets. The training set contains about 40k
images. The words are written by 657 different authors, and
all words written by each author only appear in one of the
four sets to provide sets with mutually exclusive authors.
• CVL. The CVL dataset [24] contains handwrittenmanuscripts
written by 311 different writers, each of whom wrote 6 dif-
ferent documents in English. The total number of cropped
words in the dataset adds up to 83k.

• Simulated Japanese handwriting dataset. For Japanese,
we use 61 free handwriting fonts 1 to create a dataset of
1M images that simulates handwritten text written by 61
different writers. The dataset contains 2136 kanji (Chinese
characters) and 2 Japanese syllabaries, adding up to 2302
character classes in total.

We resize all images to a fixed height of 32 pixels while keeping
their original aspect ratio.

The lexicons employed in our experiments are extracted from
the used datasets and we do not use additional text corpora.

4.3 HTR Evaluation Metrics
Following [12], we use a state-of-the-art text recognition network
from [5] to train HTR models. Our HTR models are trained from
scratch using labeled data from the IAM dataset, and also data
produced by trained generative models. We employ two standard
metrics to evaluate the performance. Word error rate (WER) indi-
cates the percentage of misread words in the test set. Normalized
edit distance (NED) is the edit distance between the predicted word
and the target word normalized by the length of the target word.

4.4 Data Augmentation for HTR
Collecting labeled data is much more difficult than collecting data
without annotation. As a result, in real life situations, we may have
access to data which is only partially annotated or we may be
able to collect annotations only for a subset of our unlabeled data
due to the labor cost required to make annotations. In our model
for handwritten text generation, only the text recognition module
requires labeled data for its optimization. The discriminator only
predicts whether an image of handwritten word is realistic or not,
so we can use unlabeled data to optimize it. This allows us to train
our model with only partially labeled data. To simulate the situation
where we have only partially labeled data, we create IAM-5k dataset
consisting of 1

8 of the data from IAM, which is about 5k labeled
images. The rest of the images from IAM is used as unlabeled data.
Then, we train our model in a semi-supervised fashion using both
the labeled data from IAM-5k and the unlabeled data.

As a baseline for evaluation, we employ an HTR model trained
only on IAM-5k. Then, we augment the IAM-5k dataset with 100k
images produced by our conditional generative models trained in
a semi-supervised fashion, and train HTR models on these aug-
mented datasets. The results presented in Table 2 demonstrate that
augmenting the training dataset for HTR with images generated
by our model trained using both labeled and unlabeled data im-
proves the HTR performance. In addition, HTR models trained on
datasets augmented with images generated by our proposed model
achieve better results than HTR models trained on a dataset aug-
mented with images generated by existing state-of-the-art model
for handwritten text generation.

Table 3 shows that we can achieve boost in HTR performance
even when we employ the models trained in the way explained
above on a different dataset, which may be helpful when we want
to perform HTR on data that we have no annotation for. We use
the test set of the CVL dataset to demonstrate this.

1https://www.freejapanesefont.com/category/handwriting/

JokerGAN: Memory-Efficient Model for Handwritten Text Generation with Text Line Awareness ACMMM ’21, October 20–24, 2021, Chengdu, China

Training Data WER ↓ NED ↓
IAM-5k (baseline) 55.56 27.07
IAM-5k + ScrabbleGAN [12] 100k 38.97 14.35
IAM-5k + JokerGAN w/o TLC 100k 38.43 14.18
IAM-5k + JokerGAN 100k 36.30 13.04

IAM (oracle) 16.52 4.94
Table 2: Text recognition evaluation on the test set of IAM
dataset using HTR models trained on data specified in the
table. We use an HTR model trained on 5k labeled images
as the baseline. Models that are trained on datasets aug-
mented by 100k images generated by JokerGAN trained
in semi-supervised manner on labeled and unlabeled data
yield better performance than the baseline. Models trained
on datasets augmented by JokerGAN also outperform those
trained on data augmented by existing state-of-the-art. The
last row shows performance of an HTR model trained on
the full IAM dataset of approximately 40k labeled images.

Training Data WER ↓ NED ↓
IAM-5k (baseline) 77.39 47.59
IAM-5k + ScrabbleGAN [12] 100k 67.01 32.36
IAM-5k + JokerGAN w/o TLC 100k 65.47 31.53
IAM-5k + JokerGAN 100k 62.33 28.42

Table 3: Text recognition evaluation on the test set of CVL
dataset using HTR models trained on data specified in the
table. The results show that data augmentation is effective
even if we apply the trained HTR model on a different
dataset.

Method FID ↓ GAN-train ↓ GAN-test ↓
ScrabbleGAN [12] 14.31 51.84 28.41
JokerGAN w/o TLC 10.37 49.88 14.78
JokerGAN (TLC, size 1) 11.12 55.09 11.81
JokerGAN (TLC, size 4) 9.18 49.14 10.90
JokerGAN (TLC, size 8) 10.87 55.47 15.60

Table 4: Evaluation of our proposed model against the state-
of-the-art using GAN evaluation methods. For GAN-train
and GAN-test tests, we useWER as the measurement of per-
formance. We also train our model without text line condi-
tions (TLC) and with different TLC embedding sizes to eval-
uate the performance of TLC.

4.5 GAN Metric Evaluation
Following existing work, we use Frechet inception distance (FID)
[17] to evaluate performance of the generative model. FID can
measure visual quality and sample diversity, but it was introduced
for unconditional image generation and it cannot tell us how well
the results match the conditions. To address that, we employ GAN-
train and GAN-test metrics [36], which evaluate conditional image

Method User preference

ScrabbleGAN [12] 26.5
JokerGAN (w/o TLC) 29.6
JokerGAN 43.9

Table 5: User preference study. The numbers show the per-
centage of people who find the images generated by the re-
spective methods more realistic and natural. We used the
IAM dataset to train the models.

generation on a downstream image recognition task. For GAN-train,
a recognition model is trained on generated images and tested on
a test set of real images. For GAN-test, real images are used to
train a model which is then tested on generated data. GAN-train
is an indicator of diversity of generated images, and GAN-test is a
measure of fidelity of generated images with respect to the original
data. We use HTR as the downstream task and WER to measure
recognition performance. As can be seen in Table 4, our proposed
model achieves superior results in all metrics. The results indicate
that images generated using our proposed model have significantly
higher fidelity, in particular.

4.6 Text Line Conditioning
Our GAN metric evaluation, presented in Table 4, indicates that
using text line conditions (TLC) improves the quality of generation.
The size of TLC embeddings, however, affects the performance.
We conduct experiments with different embedding sizes and we
empirically find that the optimal size in our settings is 4, as can be
seen in Table 4.

Samples of generated images in Figure 4 indicate that using TLC
leads to better alignment of characters. Notice particularly that
characters extending below the baseline or above the mean line in
images generated by JokerGAN with TLC, shown in the leftmost
column, look more realistic and do not suffer from misalignment
or distortion.

4.7 Human Evaluation
We conduct a study on Amazon Mechanical Turk (AMT) to com-
pare the visual fidelity of images generated by our proposed model
against the state-of-the-art method. The AMT workers are given a
task to select the most realistic looking image out of three images
of the same word generated by three different methods. We ran-
domly generate 100 questions and each question is answered by 20
different workers.

Table 5 shows the evaluation results. We find that users perceive
images generated by our proposed model more realistic than images
produced by the existing state-of-the-art method. Furthermore, the
results also show that users strongly favor the images generated
by the model trained with text line conditioning.

4.8 Qualitative Evaluation
Figure 4 shows a comparison of images generated by JokerGAN and
images generated by the existing state-of-the-art method. Images
generated by JokerGAN look more refined and have more natural
shapes, particularly when using text line conditioning.

ACMMM ’21, October 20–24, 2021, Chengdu, China Jan Zdenek and Hideki Nakayama

Figure 4: The first column shows images generated by Joker-
GAN. The second column shows images generated by Jok-
erGAN without text line conditioning. The third column
shows images generated by ScrabbleGAN [12].

Figure 5: Generating different styles with JokerGAN. Images
in each column are generated using the same latent vector
with different word conditions.

In Figure 5, you can see images generated by our proposed
method with fixed latent vectors. Each column shows images gen-
erated with the same latent vectors and different word conditions.
When using the same latent vectors, the style of generated images
remains very similar even when we change the word condition.

Figure 6 shows examples of images generated by JokerGAN
trained on our Japanese dataset, and their corresponding target
labels. Despite the large number of classes in the dataset, our model
is able to generate images of text that match the input conditions
and look highly plausible in most cases.

Figure 6: Examples of generated images of Japanese hand-
writtenwords conditioned by character sequences shownbe-
low each image.

Method Latin alphabet 2302 Japanese chars

ScrabbleGAN [12] 23.1M 606.2M
JokerGAN 2.8M 3.6M

Table 6: Comparison of the number of parameters in the gen-
erator of JokerGAN and ScrabbleGAN depending on the size
of the character set in the used dataset.

4.9 Model Size
Table 6 shows a comparison of the number of parameters in the
generator of JokerGAN and ScrabbleGAN. As you can see, despite
the large difference in the number of characters when training
either on the Latin alphabet or Japanese characters, the size of our
model does not significantly change. On the other hand, the size of
the ScrabbleGAN generator grows nearly linearly with respect to
the number of characters.

5 CONCLUSION
We have proposed a novel architecture for generation of handwrit-
ten text images. In contrast to the existing state-of-the-art method
for generation of handwritten text images, whose memory require-
ments grow significantly as the number of characters in the char-
acter set increases, the memory requirements of our model remain
virtually the same regardless of the size of the character set in the
training dataset. This allows us to train our model not only on

JokerGAN: Memory-Efficient Model for Handwritten Text Generation with Text Line Awareness ACMMM ’21, October 20–24, 2021, Chengdu, China

the Latin alphabet, but also on datasets with large character sets
such as Japanese. Furthermore, while boasting lower memory re-
quirements, our proposed method also achieves better performance
when applied as a data augmentation method for HTR systems. We
have also introduced a new type of conditioning which makes the
generator aware of vertical properties of characters in the target
word and improves the alignment of characters in the generated
image. A human evaluation study further confirms that our method
can generate more realistic images of handwritten text.

REFERENCES
[1] Francesco Adamo, Filippo Attivissimo, Attilio Di Nisio, and Maurizio Spadav-

ecchia. 2015. An Automatic Document Processing System for Medical Data
Extraction. Measurement 61 (2015), 88–99.

[2] Emre Aksan, Fabrizio Pece, and Otmar Hilliges. 2018. DeepWriting: Making
Digital Ink Editable via Deep Generative Modeling. In CHI.

[3] Eloi Alonso, BastienMoysset, and RonaldoMessina. 2019. Adversarial Generation
of Handwritten Text Images Conditioned on Sequences. In ICDAR.

[4] Asaph Azaria, Ariel Ekblaw, Thiago Vieira, and Andrew Lippman. 2016. MedRec:
Using Blockchain for Medical Data Access and Permission Management. In 2016
2nd International Conference on Open and Big Data (OBD).

[5] Jeonghun Baek, Geewook Kim, Junyeop Lee, Sungrae Park, Dongyoon Han,
Sangdoo Yun, Seong Joon Oh, and Hwalsuk Lee. 2019. What Is Wrong With
Scene Text Recognition Model Comparisons? Dataset and Model Analysis. In
ICCV.

[6] Claus Bahlmann, Bernard Haasdonk, and Hans Burkhardt. 2002. Online handwrit-
ing recognition with support vector machines - a kernel approach. In Proceedings
Eighth International Workshop on Frontiers in Handwriting Recognition. 49–54.

[7] Andrew Brock, Jeff Donahue, and Karen Simonyan. 2018. Large Scale GAN
Training for High Fidelity Natural Image Synthesis. In ICLR.

[8] Bo Chang, Qiong Zhang, Shenyi Pan, and Lili Meng. 2018. Generating Handwrit-
ten Chinese Characters using CycleGAN. In WACV.

[9] Min Chen, Yixue Hao, Kai Hwang, Lu Wang, and Lin Wang. 2017. Disease
prediction by machine learning over big data from healthcare communities. IEEE
Access 5 (2017), 8869–8879.

[10] Brian Davis, Chris Tensmeyer, Brian Price, Curtis Wigington, Bryan Morse, and
Rajiv Jain. 2020. Text and Style Conditioned GAN for Generation of Offline
Handwriting Lines. In BMVC.

[11] Kartik Dutta, Praveen Krishnan, Minesh Mathew, and CV Jawahar. 2018. Improv-
ing CNN-RNN Hybrid Networks for Handwriting Recognition. In ICFHR.

[12] Sharon Fogel, Hadar Averbuch-Elor, Sarel Cohen, Shai Mazor, and Roee Lit-
man. 2020. ScrabbleGAN: Semi-Supervised Varying Length Handwritten Text
Generation. In CVPR.

[13] Ji Gan and Weiqiang Wang. 2021. HiGAN: Handwriting imitation conditioned
on arbitrary-length texts and disentangled styles. In AAAI.

[14] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, DavidWarde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial
Networks. In NIPS.

[15] Alex Graves. 2013. Generating Sequences With Recurrent Neural Networks.
arXiv preprint arXiv:1308.0850 (2013).

[16] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber.
2006. Connectionist Temporal Classification: Labelling Unsegmented Sequence
Data with Recurrent Neural Networks. In ICML.

[17] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and
Sepp Hochreiter. 2017. GANs Trained by a Two Time-Scale Update Rule Converge
to a Local Nash Equilibrium. In NIPS.

[18] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Computation 9, 8 (1997), 1735–1780.

[19] Jianying Hu, Michael K Brown, and William Turin. 1996. HMM based online
handwriting recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence 18, 10 (1996), 1039–1045.

[20] Bo Ji and Tianyi Chen. 2019. Generative Adversarial Network for Handwritten
Text. arXiv preprint arXiv:1907.11845 (2019).

[21] Lei Kang, Pau Riba, Yaxing Wang, Marçal Rusiñol, Alicia Fornés, and Mauricio
Villegas. 2020. GANwriting: Content-Conditioned Generation of Styled Hand-
written Word Images. In ECCV.

[22] Diederik P Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR.

[23] Diederik P Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes. In
ICLR.

[24] Florian Kleber, Stefan Fiel, Markus Diem, and Robert Sablatnig. 2013. CVL-
DataBase: An Off-Line Database for Writer Retrieval, Writer Identification and
Word Spotting. In ICDAR.

[25] Jae Hyun Lim and Jong Chul Ye. 2017. Geometric GAN. arXiv preprint
arXiv:1705.02894 (2017).

[26] Xiyan Liu, Gaofeng Meng, Shiming Xiang, and Chunhong Pan. 2019. FontGAN:
A Unified Generative Framework for Chinese Character Stylization and De-
stylization. arXiv preprint arXiv:1910.12604 (2019).

[27] Zichuan Liu, Yixing Li, Fengbo Ren, Wang Ling Goh, and Hao Yu. 2018. Squeezed-
Text: A Real-Time Scene Text Recognition by Binary Convolutional Encoder-
Decoder Network. In AAAI.

[28] Nam-Tuan Ly, Cuong-Tuan Nguyen, Kha-Cong Nguyen, and Masaki Nakagawa.
2017. Deep Convolutional Recurrent Network for Segmentation-Free Offline
Handwritten Japanese Text Recognition. In ICDAR.

[29] U-V Marti and Horst Bunke. 2002. The IAM-database: an English sentence
database for offline handwriting recognition. IJDAR 5, 1 (2002).

[30] Mehdi Mirza and Simon Osindero. 2014. Conditional Generative Adversarial
Nets. arXiv preprint arXiv:1411.1784 (2014).

[31] Takeru Miyato and Masanori Koyama. 2018. cGANs with Projection Discrimina-
tor. In ICLR.

[32] Rejean Plamondon and Sargur N Srihari. 2000. Online and off-line handwriting
recognition: a comprehensive survey. IEEE Transactions on Pattern Analysis and
Machine Intelligence 22, 1 (2000), 63–84.

[33] Thomas Plötz and Gernot A Fink. 2009. Markov models for offline handwriting
recognition: a survey. IJDAR 12, 4 (2009), 269.

[34] Mike Schuster and Kuldip K Paliwal. 1997. Bidirectional recurrent neural net-
works. IEEE Transactions on Signal Processing 45, 11 (1997), 2673–2681.

[35] Baoguang Shi, Xiang Bai, and Cong Yao. 2016. An End-to-End Trainable Neural
Network for Image-based Sequence Recognition and Its Application to Scene
Text Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence
39, 11 (2016), 2298–2304.

[36] Konstantin Shmelkov, Cordelia Schmid, and Karteek Alahari. 2018. How good is
my GAN?. In ECCV.

[37] Jorge Sueiras, Victoria Ruiz, Angel Sanchez, and Jose F Velez. 2018. Offline
continuous handwriting recognition using sequence to sequence neural networks.
Neurocomputing 289 (2018), 119–128.

[38] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to Sequence
Learning with Neural Networks. arXiv preprint arXiv:1409.3215 (2014).

[39] Shan-Jean Wu, Chih-Yuan Yang, and Jane Yung jen Hsu. 2020. CalliGAN: Style
and Structure-aware Chinese Calligraphy Character Generator. arXiv preprint
arXiv:2005.12500 (2020).

[40] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. 2017. Unpaired
Image-to-Image Translation using Cycle-Consistent Adversarial Networks. In
ICCV.

ACMMM ’21, October 20–24, 2021, Chengdu, China Jan Zdenek and Hideki Nakayama

Figure 7: Examples of style interpolation between two dif-
ferent styles defined by two different latent vectors.

Figure 8: Examples of generated images of out-of-
vocabulary words and phrases. We use a generative model
trained on the IAM dataset of English words to generate
handwritten text in different languages that also use the
Latin alphabet. Starting from the top, the languages are
French, Danish, Spanish, Finnish, German, Italian, Slovak,
and Dutch.

Figure 9: Examples of out-of-vocabulary generation. Since
our model uses character-level conditioning, we can gener-
ate images of arbitrary character sequences, including non-
existent words and random character sequences.

A STYLE INTERPOLATION
In Figure 7, we show examples of interpolation between two differ-
ent styles defined by two different latent vectors. As can be seen,
the style gradually changes from one style to another when gener-
ating images using interpolated latent values. This indicates that
our model can generalize on the handwriting styles and continuous
changes in the latent vector results in images whose appearance
changes continuously.

B GENERATION OF OUT-OF-VOCABULARY
PHRASES

Since our model uses character-level conditioning, we can feed
arbitrary character sequences as conditions into our generator.
This allows us to generate words that are not in the dataset used
for training. Despite our model being trained only on a dataset of
English words, we can generate images of handwritten words in
other languages that also use the Latin alphabet, as demonstrated in
Figure 8. However, since our model is trained on the character set
used in English, we cannot generate words with special characters
such as letters with diacritics, e.g. words like ‘école’, ‘voilà’, and ‘tête’

JokerGAN: Memory-Efficient Model for Handwritten Text Generation with Text Line Awareness ACMMM ’21, October 20–24, 2021, Chengdu, China

Figure 10: Examples of generated images of phrases comprising ofmultiple words. Themodel that generated these images was
trained only on data consisting of single handwritten words. The presented examples are chosen randomly without cherry-
picking.

in French. We can also generate completely non-existent words and
random character sequences, as illustrated in Figure 9.

C GENERATION OF MULTIPLE WORD
PHRASES

We train JokerGAN on datasets of handwritten words; therefore,
there are no whitespace characters in our training images. We
demonstrate that we can train our model to generate whitespace

even when training on datasets of single handwritten words. To
achieve this, we randomly add whitespace of the size of one char-
acter either on the left side or right side of the image, and add
the whitespace character label at the beginning or the end of the
sequence of labels corresponding to the word in the image. A model
trained using this approach can generate not only single words but
also long phrases comprising of multiple words as illustrated in
Figure 10.

ACMMM ’21, October 20–24, 2021, Chengdu, China Jan Zdenek and Hideki Nakayama

Figure 11: Examples of visual questions given to workers on Amazon Mechanical Turk. In each question, there is an image
generated by JokerGAN, an image generated by JokerGAN without text line conditioning, and an image generated by Scrab-
bleGAN. Workers have to select the most natural looking image.

D EXAMPLES FROM HUMAN STUDY
EVALUATION

In Figure 11, you can see examples of visual questions given to
workers on Amazon Mechanical Turk. The workers have to select
the image of a handwritten word that looks the most realistic to
them. There is a caption provided for each question stating what
word is supposed to be written in the images. For each question,

there are three images of a handwritten word. One of them is
generated by JokerGAN, one by JokerGAN trained without text
line conditioning, and one is generated by ScrabbleGAN. The order
of the three images is randomized.

E ADDITIONAL EXAMPLES
Figure 12 shows additional, randomly selected examples of hand-
written word images generated by JokerGAN.

JokerGAN: Memory-Efficient Model for Handwritten Text Generation with Text Line Awareness ACMMM ’21, October 20–24, 2021, Chengdu, China

Figure 12: Additional examples of handwritten word images generated by JokerGAN. The examples are chosen randomly
without cherry-picking.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Handwritten Text Recognition
	2.2 Handwritten Text Image Generation
	2.3 Image Generation of Chinese Characters

	3 JokerGAN
	3.1 Model Architecture
	3.2 Multi-Class Conditional Batch Normalization
	3.3 Conditional Generation Based on Vertical Aspects of Text

	4 Experiments
	4.1 Implementation Details
	4.2 Datasets
	4.3 HTR Evaluation Metrics
	4.4 Data Augmentation for HTR
	4.5 GAN Metric Evaluation
	4.6 Text Line Conditioning
	4.7 Human Evaluation
	4.8 Qualitative Evaluation
	4.9 Model Size

	5 Conclusion
	References
	A Style Interpolation
	B Generation of Out-of-Vocabulary Phrases
	C Generation of Multiple Word Phrases
	D Examples from Human Study Evaluation
	E Additional Examples

